/7 blackbird

MAGNET ROCKET SIMULATION
TEACHER GUIDE

PACING GUIDE

'This unit is designed to take 2-3 weeks of class time to complete, with or without Blackbird
lessons as homework. The unplugged ‘Modeling with Magnets' and ‘Simulation Investigation’
activity outlines can be found in the Blackbird Teacher resources inside the app. Each of
these unplugged/hybrid classroom activities have more detailed time estimates. The ‘Stage
Guides’ section below has more detailed notes about the time to dedicate to each stage as
well.

Modeling with Stage Stage Simulation
Magnets 4 6 Investigation

One class 1-2 weeks 1-2 class periods

2-3 weeks total



'An overview of major concepts introduced in each stage of lessons in Blackbird. Use the
‘Guiding Question’ at the start of a stage and ‘Probing Questions’ once students have
finished. Probing questions can facilitate conversations about the simulation students are
programming, provide opportunities for questions, important concept review, and
connection back to the science of magnetism. Pick your favorite 2 or 3 to use in class.

e Stage 1 - Image Objects
o Guiding Question: How can we learn to use Blackbird to start creating our magnetism
model?

o What students have created at the end of the stage: A program that places images
of the two magnets on the canvas.

o Important programming concepts introduced:
= |mage objects
= The canvas and coordinates
= |mage library
= Debugging

o Important science concepts:
= The like-poles of magnets repel each other

o Probing Questions
= The magnets in the simulation are facing each other, why is that important?
e Magnets repel when like-poles are facing each other.

= The magnet rocket simulation uses canvas.height and canvas.width several times.
What do those represent? What happens when you divide one of them in half?

e They represent the height and width of the canvas, respectively, shown in
pixels. They are both evaluated by the program as numbers. When you divide
one of them in half, you get the number of half of the pixels in the width or
height of the canvas. This is a useful way to find the center of the canvas. You
can introduce the Canvas Practice App here to show these properties.

Hi,Ms.Mackessy! A @ =

A Home

S Workshop

<[> Code review

¥ Leaderboard
ﬁ @ Canvas practice

& My account

€ Get support



= What does the Debug button do? Why do you think that might be an important tool
as we build this simulation?
e Steps through a program one line at a time. It is a very useful way to find
where errors are occurring in a program.

= How are the magnet images we're using in the computer model different from the
magnets we used to build a physical model?
e Students will mention the colors and labels. Review what those are intended to
represent. They might mention the images are only two-dimensional. Ask why
that might matter in the model.

o Extension Ideas
= Practice lesson 1.3P
= The Extra challenge at the end of 1.1, “Add to this program so it places 5 Images on
the canvas to create a whole zoo of animals!”
= Workshop project idea: Have students upload some of their favorite images from
around the web and use them in a creative way in a program.

o Support Ideas

= Help students identify the pattern that objects and properties have in the code:
[object name][a period][the property name]. For example, rocket.x. ‘rocket’ is the
object name, the period (or dot), and x is the property name. If students are having
trouble remembering the names of the properties you can Run the code, and click
the {+} symbol next to the name of the object. All of the object property names will
be displayed.

= Remind students that more information lives in the Deep Dive button on each task.

= Remind students that blue links give helpful examples if they move their mouse
over the link.

o Notes for Teachers: At the end of this stage students will have created a simple
program that places a couple of magnet images on the canvas. The HTML canvas has
its own coordinate system that students won't be familiar with. It's worth taking a
moment to show them the canvas using the ‘Canvas practice’ app. You can place
several points on the canvas and ask students to identify the pattern they see in the
coordinate pairs. Make sure students know where the ‘origin’ of the canvas is, and
recognize that increasing x and y values of objects positions them to the right and
down, respectively. It's not expected that students will completely understand the
canvas at this point in the lesson sequence, but it's a good idea to call attention to it at
this point. Students will get lots of practice positioning and moving objects in the
lessons to come.



e Stage 2 - Variables

o

Guiding Question: How can we add more information to our magnetism model?

What students have created at the end of the stage: Images of the two magnets on
the canvas and memory storage spaces (variables) for data to be used in calculations

Important programming concepts introduced:
= Declaring and assigning variable
= data types (numbers and 'undefined’)
= |ncrementing

Important science concepts:
= Forces like gravity, air resistance, and the force with which an object is moved
(‘power’) all affect the movement of objects.
= Defining variables in a system

Probing Questions
= What is the difference between declaring a variable and assigning a variable?
e Declaring - using var to make a new variable.
e Assigning - using an equals sign (=) to set a value to be remembered by the
variable.
e You can assign a variable a new value as many times as you want. You only
need to declare, or create, a variable once.

= What is an undefined variable? Which variables are currently undefined in the
magnet simulation?
e Avariable that isn't remembering any information.
e Dist and power

= What is incrementing?
e Increasing the value of a numeric variable.

= Draw attention to the variables named power, gravity, airResist, speed. Ask
students to consider what data they might remember in the program.
e No right or wrong answers at this point. These variables become more relevant
in later lessons, and are key for creating a realistic simulation.

= How will adding variables to our program help us create a better model?

e Variables are memory storage spaces in computer programs. Adding more of
them to the program means more information can be stored and used in the
model. See if students recognize that if they wanted to create a more accurate
model in the future, they'd need to add more variables - more information - to
the program. This understanding might not come until they start using the
information stored in these variables later in the program.



o

(o]

(o]

Extension Ideas
= Practice lesson 2.3P
= The Extra challenge at the end of 2.1, “Create a program that declares two variables
that hold numbers. Use the two variables in a math equation later in the program.”
= See if students can use a program and variables to solve some of the homework
problems they have for math class.

Support Ideas
= Review the last task in lesson 2.2, a Debug task, with students. When the lesson
stops on a line, ask students to identify the 1) declaration keyword (var) 2) the
name of the variable 3) the assignment operator (=) and 4) the assigned value.
Practice by going through all of the new variables created in the program.
= Ask students to declare a variable and give it their first name. Have them assign it
their height in inches (or cm). le. var mike = 76;

Notes for Teachers: At the end of this stage students have added some variables,
memory storage spaces, to their program. These are simply holding information
currently, but will later be used in calculations that will determine how the magnet
rocket will move on the canvas. Now is a good time to use the Debug mode in the
finished lesson (2.2) to go over each of the variables and tie them back to science
concepts. You can ask students to think of ways they've seen, or experienced, air
resistance, for example.

e Stage 3 - Animation

(o]

Guiding Question: How can we add movement to our model?

What students have created at the end of the stage: Moving images of the two
magnets with variables for data to be used in calculations later. The rocket does not
move realistically.

Important programming concepts introduced:
= The animate function
= repeating instructions (iterating)
= Decrementing

Important science concepts:
= Movement is a function of distance over time
= Velocity

Probing Questions
= What happens to code inside the animate function? Outside the function?
e Inside - Itis run over and over 30 times a second.
e Outside - it is only run once.



= What does Blackbird mean by ‘one frame of the animate function’?
e One loop, or iteration, of the code inside the function. The animate function
runs at about 30 ‘frames’ per second.

= What happens to the car at the end of lesson 3.1?

e Run and pause the program created in 3.1 several times to illustrate that the
car continues moving to the right of the canvas. ‘render invisible’ directive just
stops Blackbird from causing an error because of it. The car is still there - just
not visible.

= What is decrementing?
e Decreasing the value of a variable.

= What does the background function do?
e Covers up everything on the canvas with a color, white by default.

= How is the addition of the animate function, or some other type of loop, a useful
tool in scientific computer modeling?

e Loops, like the animate function, allow programs to run the same set of
instructions over and over. These are helpful tools in modeling because they
allow scientists to see the effect of a phenomena after many years, or many
generations, for example. In our model we're using loops to move a shape on
the canvas to create an animation that resembles the movement we saw with
the physical magnet launching model.

o Extension Ideas:
= Practice lesson 3.3P
= The extra challenge from lesson 3.1, “Use what you've learned about incrementing
to increase the width and height of the car image as it rolls across the canvas.”
= Ask students to create an animation that moves an image up or down the canvas
by a value held in a variable, like they will in stage 4. For example:
e varspeed =5;
e car.x =car.x + speed;

o Support Ideas
= Be sure students recognize how the animate function works. Use the Debug mode
to show how the code inside the function loops over and over. Have students
predict what will happen when each line of code is run.
= Demonstrate how incrementing works. Place a ‘breakpoint’ on line 23 of lesson 3.1
then press Run. The program will stop on that line and you can move your mouse
over the equal sign (=) to see the result of the expression.



o Notes for Teachers: The addition of the animate function adds an additional
dimension to the computer program. Before this stage the program ran from start to
finish in an instant - the image objects and variables were created (declared) and
displayed on the canvas, and the program was done. Now the program never stops.
The instructions inside the animate function run over and over, 30 iterations per
second, until the user stops the program. Be sure that students recognize the part of
the program that is making it run continuously. This is also a good place to show
students how the animate function works using the Debug button with a finished
version of lesson 3.2.

e Stage 4 - Ballistics
o Guiding Question: How can we make the movement of the magnet in our model
more realistic?

o What students have created at the end of the stage: A more realistic depiction of
two magnets repelling each other

o Important programming concepts and vocabulary introduced:
= Mathematical expressions using variables

o Important science concepts
= Projectile motion experiences friction in the form of air resistance
= The effect of gravity on projectiles
= Overcoming forces through an opposing action (vector diagrams)

o Probing Questions
= What are the variables gravity, airResist and power meant to represent in this
simulation? What impact do each have on the flight of the magnet rocket?

e gravity - meant to simulate the force of gravity, eventually pulling the object
down the canvas.

e airResist - meant to simulate the friction caused by air during flight, slowing
the object down

e power - meant to simulate the power of magnets or some other propulsive
force (gas engine). Acts against gravity.

= What does the variable speed control in the rocket simulation? What happens
when the value of speed is positive? What about when it's negative?

e The variable speed is used in the simulation to control how the rocket moves
on the canvas. When speed is positive the rocket moves down the canvas (adds
pixels to its y-coordinate). When speed is negative the rocket moves up the
canvas (removes pixels from its y-coordinate).

= Why does multiplying speed by airResist slow the rocket down?

e The value of airResist is 0.97, so any value multiplied by this will be smaller

than the original value.



= Why does the magnet bounce up and down at the end of Magnet Rocket IV?
¢ When the ‘rocket’ gets close to the launcher, the repulsive force (power) is
strong enough to move the rocket up the canvas. As it gets further away from
the launcher, the force decreases to the point where gravity is stronger and the
rocket falls down. As it falls, the distance between the two magnets gets
smaller, and again, pushes the rocket up the canvas.
¢ You can think of each of these cycles as a tiny magnet rocket launch!
= How does our computer model compare to a physical model of magnetic
repulsion?
e This is an opportunity to use an unplugged demo of two magnets, in a tube,
repelling one another.

o Extension Ideas:
= Practice lesson 4.3P
= The extra challenge at the end of 4.1, “Edit this program so the rocket moves up the
canvas diagonally so it moves up and to the right.”
= Ask students to create a program in the Workshop that speeds a car along the
bottom of the canvas.

o Support Ideas:
= This stage adds several equations to the program, then uses the result to move an
object on the canvas. You might focus on the first step - the equations - by having
students create really simple programs that use variables in a math equation. Here
is an example, “A program that adds a and b.”

vara=2;
varb =2;
var G

c=a+b;

o Notes for Teachers: At the end of this stage students have an animation that looks a
lot like the repulsion of two magnets in a system. Take time to ensure students
understand why that is - mathematics. It isn't necessarily important for students to
understand the inverse square law equation used to calculate power, but it is
important for them to be able to recognize it is an important part of making the model
more realistic. Math allows us to model all sorts of natural phenomena - velocity,
population growth, fluid dynamics, you name it. Ask students about equations they
know about that model something in the real world (area, rate, etc).

If you want to dive deeper into why the magnet rocket moves the way it does, you can
use the Debug button to take a close look at the value of speed at different points in
the animation. You can use the Pause button to stop the program while the magnet is
moving up, then look at the value of speed, then Run the program and Pause while the
magnet is moving down and look again. You can let the magnet slow down then Pause
and examine the value of speed again.



Stage 5 - Conditional Statements
o Guiding Question: How can we program our model so it can make a decision about
what it should do?

o What students have created at the end of the stage: A realistic depiction of two
magnets repelling each other that is able to be manipulated by the user.

o Important programming concepts and vocabulary introduced:
= Conditional statements (if and else)
= mouse properties

o Important science concepts
= How distance between magnets impacts the PE and KE of a system.

o Probing Questions
= Where in your everyday life have you used a conditional statement?
¢ Students might mention times when they've been asked or told to do
something “or else!”. They might describe a time they needed to do something,
and if they didn't, they'd have to do a different thing. They might also talk about
comparison operators (greater than, less than) from math class.
= What does a conditional statement do in a computer program? Describe it to your
elbow partner in your own words.
e Conditional statements allow programmers to add logic to computer programs.
They check if a condition is met, and if so, execute a set of instructions.
= Why do we need to use a conditional statement in the magnet rocket model?
¢ A conditional statement allows the program to check if the mouse button is
clicked and move the position of the rocket, so we can launch it from different
heights above the launcher.
¢ A second conditional statement stops the rocket from sinking into the bottom
of the canvas.
= Why couldn’t the magnet be dragged down to touch the launcher? How was the
issue fixed?
e The program was constantly calculating the new speed of the rocket magnet,
even when it was being positioned for a launch. We used an else statement to
‘turn off’ the electromagnet launcher (stop the calculations that impact speed of
the rocket) so we could position the rocket closer.
o Extension Ideas:
= Practice lesson 5.3P
= Extra challenge from 5.1, “Add to this program by adding another if statement that
checks to see if the 'r" key is pressed down. If it is, change the background color to
red.”
= Challenge students to create a conditional statement that displays one image when
the result of an equation is an even number, or a different image if the number is
odd.



o

(o]

Support Ideas:
= Conditional statements are essentially instructions given to a computer in the form

of ‘if this... then that'. You might help students understand the flow of these
statements by creating some simple examples without code but using those terms.
For example, “If it is raining outside, then I'll wear my raincoat.” You can add an else
statement to illustrate how those work as well, “If it is raining outside, then I'll wear
my raincoat, otherwise I'll wear my sweater.” Ask students to come up with their
own example. Then you can have them think about how they would write the code
of their statement (it doesn’t need to work!):
If (raining == true) {

wear(raincoat);

}else {

wear(sweater);

}

Notes for Teachers: At the end of this stage students have added logic statements to
their program. These statements (if/else statements) are checked each time the
program passes over them. If the condition is met (the expression is true) then the
code inside the statement runs. If the condition is not met, the program passes over
the entire if statement, unless there is an else statement. In that case the code inside
the else is run when the condition is not met. Statements like these are the basis of all
logic in computer programs. As they grow in complexity, more complex systems can be
modeled. Artificial intelligence is an extension of these types of logic statements. Itis a
good idea to stop and show students the behavior of conditional statements. You can
stop on the line with the condition, line 11 in lesson 5.1 for example, and ask students
to predict what will happen when the Step button is pressed.

e Stage 6 - Displaying Information

(o]

Guiding Question: How can we display important information about the magnet
launch for the user?

What students have created at the end of the stage: A simulation of two magnets
in a system. Information about the movement of the ‘rocket’ magnet is displayed for
further investigation about the system as well as to consider limitations of the model.

Important programming concepts introduced:
= The write function
= the round function
= string data type
= absolute value function

Important science concepts
= Collecting data allows scientists to develop answers to questions about a system



o Probing Questions:
= How did you calculate the area of the image in the first lesson of this stage? What
were the units of that measurement?

e Students calculate the area of the image by multiplying the width of the image
by its height. The units of measurement are pixels.

= Why were there so many spaces in the strings used in the write function of these
lessons?

e The write function prints out exactly what is included in the strings it is provided
- spaces count just like any other character to a computer! The spaces put a
little space between the number being displayed and the word added next to it.

= Why does the program need to use the coordinates of the centers of the magnets
to calculate the power?

e The centers are useful in this program so the power equation on line 61 is
never dividing by 0 - which would cause an error. It means the simulation isn't
as accurate as it could be, but it saves us from having to add even more
conditional statements to the program to prevent errors.

= How does the round function work?

e |t takes a number (or an expression that evaluates to a number) and rounds it
to the nearest whole number. It follows typical rounding rules (above 0.5
rounds up, 0.49 or less it rounds down).

= Why aren't there any units displayed next to the repulsive force of the magnets?

e Short answer: the units used to measure magnetic repulsion are complicated!

e Longer answer: Since the environment we're building our simulation in is two-
dimensional, and uses pixels as its most basic unit, the power calculated in this
simulation uses arbitrary values for gravity, air resistance, and coils. The
resulting power between the magnets follows general rules of magnetism (the
inverse square law) but the result of the calculation is only meaningful in the
context of this simulation.

= What does the absolute value function do? Why do we need it in our simulation?

e |t takes a number (or an expression that evaluates to a number) and gives the
absolute value (non-negative) of that number. The speed of the rocket flying up
is negative, so we need to use the absolute value of the speed to see if the
current speed is the greatest speed reached so far.

o Extension Ideas:

= Practice lesson 6.3P

= Extra challenge from lesson 6.1, “Explore the Docs and find out how to change the
Image object to a Rectangle object. Add extra conditional statements to this
program so the rectangle changes colors as the area grows. Add a line of text that
displays the current color of the rectangle on the canvas.”

= There are other types of conditional statements students can explore in the Docs,
like if/else if/else hierarchies and switch statements. Students might like to try
adding these to their Workshop programs.



o Support Ideas:

= Stage 6 is all about ‘concatenation’, or adding text and numbers together to make a
sequence of words and numbers. In JavaScript this is done with the + operator. If
students experience errors about ‘this expression isn't connected properly’ it is
probably because of a missing + operator in their code.

= You can practice concatenation ‘unplugged’ on the whiteboard or on paper. Ask
students to describe the weather, or some other phenomena that includes variable
data, in a complete sentence.
‘It is rainy today.’

Then have them break that sentence into the parts they would need to include in
the write function in Blackbird so it could be displayed on the canvas:

‘Itis’, rainy, ‘today.’

Since rainy weather can change (a variable), that data might be stored in a variable
called weather. Then have students jot down the completed line of code:

write('lt is’ + weather +‘ today.);

o Notes for Teachers: This stage concludes with a completed, working version of the
model. The goal is for all students to have this program to use in the ‘Simulation
Investigation’ where they collect some data generated by the program, and then
think about ways to improve the model so it better represents the relationship
between two magnets. The data that can be displayed is only limited by the
information given to, or produced by, the program. Encourage students to think
about their physical magnet launching model and brainstorm other information
that could be added to this model so it gives more information about the system.

503.470.3227 www.blackbirdcode.com info@blackbirdcode.com




